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Abstract Pervasive computing has emerged as a viable

solution capable of providing technology-driven assistive

living for elderly. The pervasive healthcare system, Con-

text-Aware Real-time Assistant (CARA), is designed to

provide personalized healthcare services for elderly in a

timely and appropriate manner by adapting the healthcare

technology to fit in with normal activities of the elderly and

working practices of the caregivers. The work in this paper

introduces a personalized, flexible, and extensible hybrid

reasoning framework for CARA system in a smart home

environment which provides context-aware sensor data

fusion as well as anomaly detection mechanisms that

supports activity of daily living analysis and alert genera-

tion. We study how the incorporation of rule-based and

case-based reasoning enables CARA to become more

robust and to adapt to a changing environment by contin-

uously retraining with new cases. Noteworthy about the

work is the use of case-based reasoning to detect condi-

tional anomalies for home automation, and the use of

hierarchical fuzzy rule-based reasoning to deal with

exceptions and to achieve query-sensitive case retrieval

and case adaptation. Case study for evaluation of this

hybrid reasoning framework is carried out under simulated

but realistic smart home scenarios. The results indicate the

feasibility of the framework for effective at-home

monitoring.

Keywords Pervasive healthcare � CARA � Cased-based

reasoning (CBR) � Fuzzy rule-based reasoning (FRBR) �
Activity of daily living (ADL) � Anomaly detection �
Home automation � Smart home

1 Introduction

With the advance and prevalence of low-cost low-power

sensors, computing devices, and wireless communication

networks, pervasive computing [1] has evolved from a

vision to a realistically achievable computing paradigm.

Research has been conducted in all related areas over the

last decade, ranging from low-level data collection and

intermediate-level information processing to high-level

applications and service delivery.

With an increasingly aging population profile, the pro-

vision of healthcare is undergoing a fundamental shift

toward the exploitation of pervasive computing technolo-

gies to support independent living and avoid expensive

hospital-based care [2]. Pervasive and context-aware

applications [3] have been widely recognized as promising

solutions for providing activity of daily living (ADL)

analysis for the elderly, in particular those suffering from

chronic disease, as well as for reducing long-term health-

care costs and improving quality of care [4].

A context-aware system is designed to use the context to

provide relevant information and services to the user. To

achieve pervasive healthcare for independent living [5], a

context-aware system should be able to observe, interpret,

and reason about the dynamic situations (both temporal and

spatial) in a smart home environment. Although the

straightforward-rule-based reasoning engine is a competent

approach, it still has some unsatisfactory limitations. For

example, specific rules may be easy to apply and are
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reliable, but only apply to a narrow range of adaptation

problems; whereas more abstract rules span a broad range

of potential adaptations but not provide domain specific

guidance. Case-based reasoning [6] is another approach

targeting problem resolution in domains where structured

domain knowledge is known; however, it requires an

accumulation of sufficient previous cases to accomplish the

reasoning task.

In this paper, we present a novel approach that combines

context awareness, case-based reasoning, and general

domain knowledge in a healthcare reasoning framework. In

combining these concepts, the architecture of this system

has the capability to handle uncertain knowledge and use

context in order to analyze the situation and leads to an

improved independent quality of life. The limitations of a

single reasoning method are overcome by adapting the

domain knowledge as rules in the process of reusing cases.

Moreover, we introduce the idea of query-sensitive simi-

larity measures in the case retrieval step which dynamically

adjusts weights of contexts based on the output of the

fuzzy-based rule engine.The context-aware hybrid reason-

ing framework we proposed is flexible and extendible

which can be applied to various domains. Especially in the

medical field, the knowledge of experts does not only

consist of rules, but of a mixture of explicit knowledge and

experience. Therefore, most medical knowledge-based

systems should contain two types of knowledge: objective

knowledge, which can be found in textbooks, and sub-

jective knowledge, which is limited to space and time and

individual. Both sorts of knowledge can clearly be sepa-

rated: objective knowledge can be represented in the form

of rules, while subjective knowledge is contained in cases.

The limitations of subjective knowledge can partly be

solved by incrementally updating the cases [7].

As part of the Context-Aware Real-time Assistant

(CARA) pervasive healthcare system, the reasoning engine

plays a crucial role by interpreting sensor data within a

wider context, reasoning with all available knowledge for

situation assessment, and performing actions according to

the results of the reasoning process. The remaining com-

ponents in the CARA are as follows:

1. Wearable wireless sensors. A key component of the

system is a body area network (BAN, i.e., a portable

electronic device capable of monitoring and commu-

nicating patient vital signs), and this includes medical

sensors such as the ECG, SpO2 meter, temperature

sensor, and mobility sensor.

2. Smart home sensors. We assume the presence of an

environmental monitoring system equipped with a

wireless sensor network and a reasoning engine. A rich

set of sensors can be used for monitoring in home

environments.

3. Remote monitoring system. This is responsible for

remotely and continuously measuring physiological

signals of the elderly through the BAN, monitoring

ambient through smart home sensor network, and

transmitting context to the reasoning engine in real-

time.

4. Data and video review system. This is designed for a

medical consultant or caregiver to review the data

previously collected from the elderly in case s/he

might not be available for real-time monitoring.

In the case of context-aware services, it is really difficult

to get an accurate and well-defined context which could be

classified as ‘unambiguous’ since the interpretation of

sensed data as context is in general imperfect and incom-

plete. We contend that the hybrid reasoning framework we

propose has the potential to minimize this problem. The

fuzzy rule-based reasoning method overlaps to some extent

with other mathematical models developed to deal with

vagueness and uncertainty. The case-based reasoning

approach addresses problems of incomplete data and lim-

itations of domain knowledge. The objective of this paper

is to present a scalable and flexible infrastructure for the

delivery, management, and deployment of context-aware

pervasive healthcare services to the elderly living

independently.

The remainder of the paper is as follows. Related work

about context-aware reasoning systems is summarized in

Sect. 2. In Sect. 3, an overview of the background

knowledge for the approach is introduced. This is followed

by the presentation of system structure, and then, the

context interpretation based on the model of context is

described. In Sect. 6, our hybrid reasoning framework is

incorporated into the CARA architecture for knowledge-

intensive case-based reasoning. In Sect. 7, the system is

evaluated on simulated realistic scenarios to illustrate how

pervasive healthcare can be supported by the proposed

scheme. The final section presents a summary and

conclusions.

2 Literature review

2.1 Related work

Making computer systems adaptable to the changes of their

operating environment has been previously researched in

the context of agent technologies [8]. An intelligent agent

is a software system operating in an environment. It senses

the changes of the environment, makes a decision in terms

of its goal and domain knowledge, and takes actions

accordingly.
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Recent technology advances in pervasive computing and

ambient intelligence have provoked considerable interest in

context-aware applications [9–13]. The use of context

awareness in pervasive computing has been studied in

healthcare domain. A number of research projects related

to pervasive healthcare and semantic modeling of context

have been conducted. Some are more general [14, 15].

Others have focused on specific aspects, such as health

status monitoring, alert and reminders based on scheduled

activities, patient behavior, and daily activities modeling.

For instance, Jawbone UP is a personal care system pro-

viding long-term monitoring of a user’s activity profile,

sleep pattern tracking, and automatic alarm notification

[16]. The Gaia project [17] developed at the University of

Illinois is a distributed middleware infrastructure that

provides support for context-aware agents in smart spaces.

CareMedia [18] uses multimedia information to track a

person’s activities. MIT’s PlaceLab [19] includes a pro-

active health care application based on wearable sensors

and environmental sensing. More relevant to context-aware

pervasive healthcare for chronic conditions is H-SAUDE

[20], which provides a decision-level data fusion technique

for monitoring and reporting critical health conditions of a

hypertensive patient at home. Context awareness is also

one of the primary characteristics of smart homes. Many

research smart home labs have been built as test beds for

context-aware pervasive computing. Examples include the

Georgia Tech Aware Home [21], MIT Intelligent Room

[22], and Neural Network House [23] at the University Of

Colorado Boulder. While our research shares ideas with

these endeavors in adapting context awareness in pervasive

computing, instead of focusing on one domain, our work

deals with context-aware pervasive healthcare within a

more general smart home environment.

Much work has been done on how to use reasoning

mechanisms to achieve context awareness. Lum [24] uses

decision trees to decide the optimal content for presenta-

tion, based on the specific context, such as intended target

device capabilities, network conditions, and user prefer-

ences. Ranganathan and Campbell [25] propose a context

model based on first-order predicate calculus. Wallace and

Stamou [26] develop a context-aware clustering algorithms

for data mining a user’s consumer interests of multimedia

documents, based on user history. Case-based reasoning is

also a successful technique for context-aware systems in

many domains [27, 28], but less so for medical applica-

tions. The main problem for case-based reasoning is the

adaptation task. Some more research is required on this

topic; some formal adaptation models [29] but no general

methods have been developed so far. In our work, a fuzzy

logic-based method for knowledge acquisition is developed

and used for case retrieval and adaptation in a case-based

reasoning system.

2.2 Previous work

The original CARA healthcare architecture has been shown

to enable improved healthcare through the intelligent use of

wireless remote monitoring of patient vital signs, supple-

mented by rich contextual information [30, 31]. Important

aspects of this application include the following: inter-

visibility between patient and caregiver; real-time interac-

tive medical consultation; and replay, review, and anno-

tation of the remote consultation by the medical

professional. A rule-based reasoning engine is imple-

mented in the CARA system by using fuzzy logic [32]. It

allows a user to configure the fuzzy membership functions

which represent the context model and applies user-

designed fuzzy rules to make inferences about the context.

The annotation of significant parts of the fuzzy-based

reasoning provides the basis for the automated intelligence

of the CARA system. However, this system requires certain

medical knowledge to structure fuzzy rules to perform the

reasoning. It is limited by being domain specific and not so

adaptable to a changing environment. This paper describes

case-based reasoning mechanisms incorporating fuzzy-

based domain knowledge to compensate for the deficien-

cies of a single reasoning model.

We are aware of the fact that research efforts are con-

verging toward the combination of statistical reasoning and

ontology-based knowledge representation. Many approa-

ches have been proposed focusing on using Semantic Web

Languages with ontologies and rules to build reasoning

systems [33–35]. Nevertheless, ontologies are primarily

treated as data models for data integration, exchange, and

sharing in these practices. In contrast, our work uses fuzzy

sets (which are more expressive, flexible, and efficient in

computation) as conceptual level knowledge models to

support automated context interpretation and reasoning.

The rules can be edited by a user using constrained natural

language rather than dealing with machine understandable

rules. The reasoning engine can work off-line on the client-

handling rules loaded from the server and raw data col-

lected from the WSN in real-time. In this paper, we handle

uncertainty in the reasoning process using fuzzy logic, and

we use a distance metric in case-based reasoning to avoid

issues of incomplete context data; there are other papers

where uncertainty is handled in an abstraction layer, sep-

arate from the symbolic reasoning process as in [36].

3 Background

In this section, we present the principles behind the two

reasoning mechanisms used to build the hybrid reasoning

framework for the CARA system. Some details of fuzzy

logic and case-based reasoning engine are introduced.
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3.1 Fuzzy logic

The declarative logical framework we use for knowledge

representation and reasoning in the CARA system is that of

fuzzy logic, based on the fuzzy set theory proposed by

Zadeh [38, 39]. Fuzzy logic is useful when working with

vague, ambiguous, imprecise, noisy, or missing informa-

tion. We can use it to control nonlinear systems that are too

tricky to model mathematically. We adapt fuzzy logic for

use in a pervasive healthcare system. Before describing the

reasoning system in detail, we want to recall some basic

fuzzy logic definitions. A fuzzy logic system consists of

three main parts: fuzzy set, rules, and inference engine.

These components and the general architecture are shown

in Fig. 1. The process of fuzzy logic is explained as fol-

lows: Firstly, a crisp set of input data are gathered and

converted to a fuzzy set using fuzzy linguistic variables,

fuzzy linguistic terms, and membership functions. This

step is known as fuzzification. Afterward, an inference is

made based on a set of rules. Lastly, the resulting fuzzy

output is mapped to a crisp output using the membership

functions in the defuzzification step.

The original definition of a fuzzy set from Zadeh [38] is

as follows: Let X be a space of points, with a generic

element of X denoted by x. Thus, X = {x}. A fuzzy set A

in X is characterized by a membership function

fA(x) which associates with each point in X a real number

in the interval [0, 1], with the values of fA(x) at x repre-

senting the ‘‘grade of membership’’ of x in A. Thus, the

nearer the value of fA(x) to unity, the higher the grade of

membership of x in A. Fuzzy sets can be further divided

based on the type of membership function which describes

them. After the inference step, the overall result is a fuzzy

value. This result should be defuzzified to obtain a final

crisp output. Defuzzification is performed according to the

membership function of the output variables. There are

different algorithms for defuzzification too. The common

algorithms are listed in Table 1, where U is the result of

defuzzification, u is the output variable, min is the lower

limit for defuzzification, max is the upper limit for de-

fuzzification, inf is the smallest value, and sup is the

largest value.

3.2 Case-based reasoning

Case-based reasoning (CBR) is a paradigm for combining

problem solving and learning that has became one of the

most successful applied methods of AI. CBR means to

retrieve former, already solved problems similar to the

current one and to attempt to modify their solutions to fit

for the current problem. The underlying idea is the

assumption that similar problems have similar solutions.

CBR has several advantages over traditional knowledge-

based systems, e.g., it reduces the knowledge acquisition

effort, requires less maintenance effort, improves over

time, and adapts to changes in the environment. These

features make it an ideal tool to use in the CARA system to

detect abnormal situations or diagnose an illness from

observed attributes. Figure 2 shows the Cased-Based rea-

soning cycle developed by Aamodt [37].

At the highest level of generality, a general CBR

application can be described by a cycle composed of the

following four processes:

1. RETRIEVE the most similar case or cases.

2. REUSE the information and knowledge in that case to

solve the problem.

3. REVISE the proposed solution.

4. RETAIN the parts of this experience likely to be useful

for future problem solving.

Fig. 1 A fuzzy logic system
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A new case represents an initial description of a problem

which also defines the query. It is used to retrieve most

similar cases from the collection of previous cases.

Similarity measure algorithms are applied to the case

retrieval task. Similarity measures involved in retrieving a

case from the case base depend very much on the memory

model and application domain. One commonly used

method is nearest neighbor retrieval.

In nearest neighbor retrieval, let CB denotes a set of

input descriptions P for which a solution S exists such that

(P, S) is in the case base. A similarity measure is a map-

ping sim : P � CB! ½0; 1� 2 R: For an attribute-value

representation, a simple similarity measure is the general-

ized hamming measure that combines the importance of

each attribute of the problem description with its local

similarity value and sums the values to create a global

similarity value for each case as shown in Eq. 1 where simj

is local similarity for attribute j and wj represents relevance

(weight) of attribute j for the problem description.

simðP1; P2Þ ¼
X

wj � simjðP1;P2Þ ð1Þ

The case-retrieved is chosen when the weighted sum of its

features that match that query case is greater than the other

cases in the case base. In simple terms, a case that matches

the query case on n number of features will be retrieved

rather than a case which matches on k number of features

where k \ n. Some features that are considered more

important in a problem-solving situation may have their

importance denoted by weighting these features more

heavily in the matching.

In terms of the case adaptation (reuse and revision), if

there are no important differences between a current and a

similar case, then a simple solution transfer is sufficient.

Sometimes, only a few substitutions are required, but in

other situations, the adaptation is a very complicated pro-

cess. So far, no general adaptation methods or algorithms

have been developed. The adaptation is still absolutely

domain dependent. Our approach is to integrate fuzzy rule-

based reasoning (FRBR) mechanism into the process of

case adaptation.

4 System design overview

Advancements in internet technology have made possible

innovative methods for the delivery of healthcare. Uni-

versal access and a networking infrastructure that can

facilitate efficient and secure sharing of patient information

and clinical data make the internet an ideal tool for remote-

patient-monitoring applications.

The overall design of the CARA pervasive healthcare

system is shown in Fig. 3. The patient’s vital signs are

monitored by different kinds of sensor within a wireless

BAN, and environmental sensors are deployed to monitor

the home surroundings. All measurement data are trans-

mitted to a gateway (often a PC or a smart phone) through

wireless connection. The mobile application collect raw

accelerometer and gyroscope readings from wearable sen-

sors and smart phone itself and produce low-level activity

contexts(i.e., sitting, lying, standing, moving, rolling).

These contexts along with other environmental and phys-

iological sensor readings are then transferred to the PC

over Bluetooth connection in real-time. The software agent

running on the gateway transforms raw sensor data into

contextual information known as sensor data fusion. The

gateway connects over the Internet to the CARA cloud

server which provides sensor data management and remote

monitoring services. A Flash application running on the

gateway publishes real-time sensor data along with live

video streams to the CARA server so that the remote

caregiver can communicate with the elderly throughout the

monitoring. On the server side, data derived from the

sensor data are stored in an implementation independent

generic format (i.e., XML), and the contexts are stored as

cases for CBR.

The reasoning engine plays a crucial role in the system

both on the client and on the server side as an intelligent

agent. It can be tailored with different rules for different

applications (such as for in-clinic assessment or smart

Fig. 2 Common case-based reasoning cycle

Table 1 Defuzzification algorithms

Operation Formula

Center of gravity
U ¼

R max

min
ulðuÞduR max

min
lðuÞdu

Left-most maximum U = inf(u0), l(u0) = sup(l(u))

Right-most maximum U = sup(u0), l(u0) = sup(l(u))
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home monitoring), and it also executes in real-time and

offers immediate notification of critical conditions. Some

critical conditions may only be identified from correlating

different sensor readings and trends in sensor readings

accumulated over time. The CARA reasoning component

is capable of performing the following reasoning tasks:

(i) continuous contextualization of the physical state of a

person, (ii) prediction of possibly risky situations, (iii)

notification of emergency situations indicating a health

risk, and (iv) home automation or user prompting within a

smart home environment.

Figure 4 illustrates the architecture of the CARA sys-

tem. In the smart home healthcare scenario, BAN and

various home environmental sensors are deployed to gather

as much information about and around the person as pos-

sible. The system listens to all available sensor data via

wireless communication protocols (i.e., Bluetooth, Zig-

Bee). The raw numeric data are interpreted to construct the

context for the monitored individual and environment. It

can then be used by the intelligent reasoning components,

which act as the brain of the system, to provide risk

assessment and home monitoring. The real-time reasoning

task is carried out with remote monitoring services and data

mining services in parallel. In this paper, we focus on the

hybrid reasoning framework which is a combination of

case-based reasoning and fuzzy rule-based reasoning. It is

worth to mention that, although case-based reasoning has

several advantages and performs good results in reasoning

task, its efficiency suffers as the size of the case base

grows. Especially for a mobile client with limited com-

puting power, it seems a bit too expensive in term of

efficiency to run the case-based reasoning applications. So

ongoing work is to make use of the power of cloud com-

puting to improve the performance of case retrieval in case-

based reasoning. Eventually, the case-based reasoning

component running on a private cloud environment should

cooperate seamlessly with the light-weight fuzzy rule-

based reasoning running on a PC or mobile client.

5 Context modeling

5.1 Context in case-based reasoning

Context is any information that can be used to characterize

the situation of an entity. Context-aware computing is the

use of context to provide relevant information and services

to the user, where relevancy depends on the particular task

of the user [40]. Context modeling is a key feature in

context-aware systems providing context for intelligent

services. Studies of context models indicate that there are

certain entities in a context that, in practice, are more

important than others for home monitoring. These are

location, identity, activity, and time [42]. In order to rep-

resent this information in our context model, we identify

the following entities:

Fig. 3 CARA pervasive healthcare system overview
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– Person entity to model the person, his clinical profile,

and his movement.

– Physiology entity to model vital signs of a person.

– Area entity to model rooms and area in the

environment.

– Object entity to model objects or resources the person

can interact with.

Research has shown that CBR is a reliable approach to

provide smart home solutions. In a smart home scenario,

contexts are used to focus on the part of the home envi-

ronment that can be sensed. Thus, the context supplies the

dynamic part of the home environment that is available to

identify the situation. The home environment depicted in

the context-aware part provides the parameters CARA uses

in the retrieval part of the case-based reasoning cycle.

These parameters can be the location where the situation is

occurring, the activity of a person, and the time of day.

Figure 5 presents the structured contexts that are con-

cerned in the processing of our case-based reasoning

engine. A case has two main parts: the findings of the

situation, which consists of the perceived context; and the

solution, which consists of the goal to be achieved and

the corresponding task to be accomplished. Note that, in

this application, an interpreted solution involves anomaly

detection and home automation. A notable improvement

of our context model for case-based reasoning is the

introduction of the grouped attributes. The model was

populated through observations done in the process of

system evaluation. It turns out that not all the context is

relevant to a specific situation. For example, if hyper-

tension is detected during the night when subject is

watching TV, it certainly does not matter whether the

lights are on or off or the humidity of the room is high or

low. In order to improve the efficiency and accuracy of

case retrieval, we use different context groups and cal-

culate their group similarities to archive the goals of the

reasoning task.

5.2 Fuzzy context model

The main problem that we consider here is the following:

given the current raw data, how can we model the context,

e.g., the current values of relevant context parameters, and

deal with data coming from multiple sources where part of

the data might be erroneous or missing. Therefore, we

adopt a fuzzy logic model [41] to represent the relevant

variables and to build low-level and high-level context

models. An overview of the fuzzy context model is shown

in Fig. 6 where we structure the low-level context

according to the Physiological Context, Personal Context,

and Environmental Context and generate high-level context

consisting of Activity Event and Medical Condition. These

are the contexts required in a ubiquitous context-aware

environment.

All pieces of information gathered by sensors can be

indexed as attributes of the context entities. In our work,

Fig. 4 Architecture of CARA system
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we map these attributes into individual fuzzy sets in the

fuzzy logic framework. Some of the attributes associated

with entities in our context model and their fuzzy sets are

detailed in Table 2. These fuzzy sets can be used for high-

level context interpretation and further for decision

inference.

6 Hybrid reasoning engine

6.1 Overall design

A pervasive healthcare system is an ambient intelligence

system that is able to (i) reason about gathered data

Fig. 5 Grouped contexts for case-based reasoning

Fig. 6 Fuzzy context model
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providing a context-aware interpretation of their meaning,

(ii) support understanding and decision, and (iii) provide

corresponding healthcare services. To achieve that in the

CARA system, we adopted a context-aware hybrid rea-

soning framework by means of case-based reasoning and

fuzzy rule-based analogy. The high-level interactions in the

hybrid reasoning engine are presented in Fig. 7. Raw data

coming from sensors are processed and integrated with

context knowledge by the context data fusion services,

producing contexts for building case queries and fuzzy sets.

After that, the case-based reasoning component starts

running a standard CBR cycle (Retrieve, Reuse, Revise,

and Retain) to perform anomaly detection and home

automation. Meanwhile, the fuzzy rule-based analogical

component loads fuzzy rules from the inference rule

database to generate higher level contexts (e.g., medical

condition and accident event) and further to identify cur-

rent situation of the user (normal, abnormal, or emer-

gency). The result of the fuzzy output can be used to

dynamically adjust weights of features or groups for case

retrieval and can also affect the adaptation of the retrieved

solution to the new case. The case is revised according to

the combination of retrieved similar cases and fuzzy out-

puts. Finally, if the detected situation is abnormal or an

emergency, then a notification or alarm is automatically

sent to the remote monitoring server and an emergency

service call can be triggered. The collected raw data and

revised case are stored for enhancing the case base and

subsequent additional analysis.

6.2 Context-aware query sensitive

Case-based reasoning is recommended to build intelligent

systems that are challenged to reduce the knowledge

acquisition task, avoid repeating mistakes made in the past,

reason in domains that have not been fully understood or

modeled, learn over time, reason with incomplete or

imprecise data and concepts, provide a means of explana-

tion, and reflect human reasoning. However, the common

k-Nearest Neighbor (k-NN) algorithm for case retrieving

has limitation as pointed out in [43], finding nearest

neighbors in a high-dimensional space raises the following

issues:

1. Lack of contrast: Two high-dimensional objects are

unlikely to be very similar in all the dimensions.

2. Statistical sensitivity: The data are rarely uniformly

distributed, and for a pair of objects, there may be only

relatively few coordinates that are statistically signif-

icant for comparing those objects.

In our reasoning framework, a case query usually con-

tains following features listed in Table 3. The high-

dimensional features of each query are unlikely to be

equally uniformed for similarity measure, and it is certainly

in some cases some of the features are more importantly

considered then the rest of the features.

To address these problems, we propose to construct,

together with context awareness, a query-sensitive mech-

anism for similarity or distance measure. The term Query

Sensitive means that the distance measure changes

depending on the current query object. In particular, the

weights used for the features similarity measure automat-

ically adjusted to each query. Specifically, we apply fuzzy

rules to the input query and use the crisp value of fuzzy

output to dynamically adjust weights, which we expect to

be significantly more accurate than the simple k-NN

method associated with case retrieving. The query-sensi-

tive similarity measure function employed by our reason-

ing framework is shown in Eq. 2.

SimgðQ;PÞ ¼

Pn

k¼1

WkSimlðQk; PkÞ

Pn

k¼1

Wk

ð2Þ

In this formula, Simg (Globe Similarity) of Q (Query)

and P (Past Case) is calculated based on Siml (Local

Similarity) of Qk (Feature k of Query) and Pk (Feature k of

Past Case), and the dynamic weight of the feature Wk. If k is

the feature of a query, we use the term weighted to denote

any function mapping Wk (weight of k) to the binary set 0, 1.

We can readily define the function using fuzzy logic. Given

a query Q, and a block of fuzzy rules Frule, we can define a

weighted function WQ;Frule
! f0; 1g as follows:

WQ;Frule
ðkÞ ¼ f ðkÞ if 8 k; k 2 Frule

0 otherwise

�
ð3Þ

where f(k) is the degree of fuzzy membership function of

feature k. For instance, we define the fuzzy membership

function of systolic blood pressure containing fuzzy sets

Table 2 Fuzzy sets representing attributes about person and area

entities

Fuzzy set Attributes Description

Age {young, middle-aged, old} Age of the person

Gender {male, female} Gender of the person

Time {morning… late night} Time of the day

Medical history {hypertension… diabetes} Has medical history

TV {on, off} Status of TV

Window {open, close} Status of windows

Temperature {cold, warm, hot} Room temperature

Light {dark, regular, bright} Brightness

Sound {mute, regular, noisy} Noise level

Humidity {dry, normal, wet} Humidity level

Location {bedroom… living room} Current location
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{very low, slightly low, normal, slightly high, very

high}, among them, very high is a left-linear fuzzy set in the

range of 140–200. If the Systolic Blood Pressure of a new

case is 167 mm Hg, once the fuzzy rule ‘‘if (Activity is

Sleeping or Activity is Resting or Activity is Watching TV or

Activity is Toileting) and (Systolic Blood Pressure is High or

Dynamic Blood Pressure is High) then Situation is Abnor-

mal’’ is evaluated and triggered, the weight of systolic blood

pressure used for the similar case retrieval is set to 0.45 which

is the fuzzy degree of very high fuzzy set of systolic blood

pressure. As a result, the final weight for each feature of the

query is dynamically adjusted by the fuzzy outputs.

6.3 Similarity weighted vote

K most similar cases are retrieved after the K-Nearest

Neighbor (K-NN) function is applied to similarity mea-

surement. Normally, the possible solution for the given

query can be predicted from the most similar case. In our

case, for anomaly detection, the results of retrieved cases

are supposed to be classified into Normal, Abnormal,

Emergency categories. To determine the possible situation

of the subject, a similarity weighted voting mechanism is

considered to be used in the voting decision during pre-

diction. Basically, every nearest neighbor has a different

influence on the prediction according to its distance to the

query. The principle of similarity weighted voting method,

the elfevident, is to use the similarity value of each

retrieved case as the weight to vote for the most reasonable

solution. It is achieved in following steps (the details of the

Fig. 7 The structure of context-aware hybrid reasoning framework

Table 3 Features of the case involved in a query

Features Type

Activity Enum activity

Duration Integer

Location Enum location

Time Date

Day Integer

Temperature Double

Light Double

Sound Double

Humidity Double

TV Boolean

Heater Boolean

Windows Boolean

Lights Boolean

Cooker Boolean

Heart rate Integer

Respiration rate Integer

Systolic blood pressure Integer

Dynamic blood pressure Integer
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similarity weighted voting algorithm are as shown in

Algorithm 1).

1. Classify K-NN retrieving result into different groups.

2. Calculate total similarity of all retrieved cases.

3. Get the sum of similarity of each group.

4. Use the group similarity to vote for prediction.

5. Calculate confidence value of the predicted result.

To distinguish the predicted result from past cases, we

apply a threshold to the confidence value of the predicted

solution which is used as a controller to balance the detection

rate and false alarm rate of the rule engine. Let us remark that

the threshold e can be freely set by the user. If user chooses

e ¼ 0; the rule engine takes into account all possible problems

in P (Past Case), and the determination of the solution of a

unique Q (Query) associated with given P lies in this case on

the voting result. Otherwise, the threshold e can be considered

as a level of decidability: if there exists no P such that

ConfðQ;PÞ > e; then there is no already solved problem

sufficiently similar to Q and no solution can be proposed. In

this case, we introduce the fuzzy adaptation model to deal

with the uncertainty. The core competence of our reasoning

framework is that domain knowledge, which is represented

by fuzzy rules and fuzzy sets, is applied to both case retrieving

and case adaptation.

6.4 Fuzzy adaptation model

We have developed an adaptation technique for case-based

reasoning derived from fuzzy logic-based analogical rea-

soning and modeling. Fuzzy logic imparts to case-based

reasoning the perceptiveness and case-discriminating abil-

ity of domain knowledge. Problems and solutions are, in

many cases, described by means of linguistic terms or

approximate values derived from expert knowledge, for

instance ‘‘If the room temperature is very low and the

season is not summer then turn on the heater.’’ A conve-

nient knowledge representation is thus fuzzy set-based. The

reason why we choose fuzzy logic is because it provides a

simple way to arrive at a definite conclusion based upon

ambiguous, imprecise, noisy, or missing input information.

It is an approach to control problems that mimics how a

person would make decisions, only much faster [41]. The

steps to constructing the fuzzy adaptation model assisting

CBR are as follows:

1. Configure the fuzzy reasoning model.

2. Traverse the case base to find k-NN similar cases.

3. Make a prediction based on weighted median of

similarity.

4. Apply the fuzzy adaptation if the confidence of the

prediction is low.
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5. Use the fuzzy output to revise the solution of the

present case.

Step 1 is performed only once to configure the fuzzy

membership function and register fuzzy rules. Step 2–4 are

performed every time a CBR cycle starts. Note, the fuzzy

reasoning mechanism is applied if and only if the CBR

method could not find a similar solution for the present

query, the result of fuzzy output then uses a possible

solution from the domain knowledge point of view to make

up for the lack of experience.

The principle of building a fuzzy framework is to design

appropriate member functions which are also referred to as

fuzzy sets. A membership function is a representation of the

magnitude of participation of each input. It associates a

weighting with each of the inputs that are processed, and it

defines functional overlap between inputs and ultimately

determines the output response [44]. The fuzzy relations

among these fuzzy sets indicate some of the rules in our

reasoning engine. The rules use the input membership values

as weighting factors to determine their influence on the fuzzy

output sets of the final output conclusion. The inputs are

combined logically using the logical operator to produce

output response values for all the expected inputs. The active

conclusions are then combined into a logical sum for each

membership function. Once the functions are inferred,

scaled, and combined, they are defuzzified into a crisp output

which gives the strength of each output membership func-

tion. An example of anomaly detection rules is given in

Table 4. Such rules can be specified by medical experts or a

particular healthcare giver. They can also be modified by

patient under supervision in case of individualization.

7 Implementation and evaluation

It is difficult to evaluate the CARA system in its entirety

without extensive field deployment and analysis. Issues

including medical, ethical, and practical make field

experiments infeasible at present.

However, we have conducted realistic simulation

experiments in our lab to test the correctness of the pro-

posed context-aware hybrid reasoning framework in a

pervasive healthcare environment and report the results in

this section. In our testing scenario, we deploy the CARA

system composed of Remote Healthcare Sever, Wearable

Sensors, and Client Applications in our lab. For this test

stage, real-time vital signs of the patient are collected from

wearable BioHarness sensors [46] while environmental

sensing is simulated by an android application which we

developed to reflect the change of the ambient environ-

ment. Biomedical parameters currently taken into account

in the model are as follows: heart rate frequency, pulse

oxygen level, systolic and diastolic blood pressure, body

temperature, and respiration rate, while ambient contexts

involves time, space, and duration associated with a sub-

ject’s activity, environmental sensing, e.g., temperature,

light, noise, and humidity, device interactions, e.g., usage

of TV, cooker, phone, and status of heater, window, and

lights. Figure 8 illustrates the screen shot of our protype

application in a testing scenario.

The remote monitoring and data review functions are

previously implemented in CARA system as described in

[30, 31]. Later, a fuzzy-based reasoning engine was inte-

grated into the system which provides real-time intelli-

gence for prediction in various healthcare situations [32].

We develop a context-aware hybrid reasoning framework

which enhances the previous fuzzy rule-based reasoning

engine with learning ability by adopting a novel case-based

reasoning model. The approach is implemented based on

jCOLIBRI:CBR Framework [45] and our previous work. It

is implemented in Android and evaluated on an Android

device (Motorola Xoom Tablet). Wireless connection

between sensor network and client application is done

using Bluetooth, and the application is also connected to

the home gateway and Remote Healthcare Server.

Use-case testing is underway with a trial in our lab. It is

carried out to evaluate performance and acceptance of the

implemented features. Since the test bed for smart home

environment is still under construction, we have to simulate

Table 4 Sample rules for anomaly detection in smart home environment

Medical-associated rules

If activity is not exercising and (heart rate is very high or respiration rate is very high) then situation is abnormal

If systolic blood pressure is very high and dynamic blood pressure is very high then situation is abnormal

If (activity is sleeping or activity is resting or activity is watching TV or activity is toileting) and (systolic blood pressure is high and dynamic

blood pressure is high) then situation is abnormal

Event-associated rules

If activity is sleeping and (TV is ON or cooker is ON or lights is ON) then situation is abnormal

If location is outdoor and time is late night then situation is abnormal

If (activity is eating or activity is cooking or activity is bathing or activity is exercising) and time is night and lights is OFF then situation is

abnormal
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the behavior of a person living in a realistic home envi-

ronment based on the daily routine of an elderly person as

shown in Fig. 9, which provides us with Activity Contexts.

We also simulate light, room temperature, sound, and

humidity changes during the test stage which gives us

Ambient Contexts. Physiology Contexts and Personal

Contexts are collected from the BAN and loaded from

server database, respectively.

All the contexts are used to build up the input query for

CBR, and they are also mapped into fuzzy sets and

enforced by applying consistency rules which refers to the

domain knowledge. The system then produces the final

decision which indicates the current situation of the sub-

ject. The case base used for testing contains 262 cases,

among them, 192 are normal cases and 70 are abnormal

cases. We evaluated the proposed approach against the

common CBR approach and evolving CBR approach using

dynamic weights in case retrieval. Given the high vari-

ability among these trials, we are able to evaluate the

accuracy of situation prediction over a wide range. The

results are shown in Table 5. To simplify the evaluation

process for anomaly detection, here, we only consider a

two-class prediction problem (Normal or Abnormal), in

which the outcomes are labeled either as positive or neg-

ative. If the outcome from a prediction is Abnormal and the

actual situation is also Abnormal, then it is called a true

positive (TP); however, if the actual situation is Normal,

then it is said to be a false positive (FP). Conversely, a true

negative (TN) has occurred when both the prediction out-

come and the actual situation are Normal, and false

negative (FN) is when the prediction outcome is Normal,

while the actual situation is Abnormal. As we discussed in

the previous section, we adjust the threshold for the con-

fidence value to get a trade-off between detection rate and

false alarm rate. The contingency table above can derive

several evaluation metrics, e.g., true positive rate (Recall),

false positive rate (Fall-out), true negative rate (Specific-

ity), and positive predictive value (Precision) [47]. It turns

out that accuracy is not a sufficient metric for the evalua-

tion of anomaly detection. Since most of the cases are

normal, even if it predicts every situation as normal, the

accuracy could still be very high. As a result, we introduce

the idea of receiver operating characteristic (ROC) in sig-

nal detection theory [47] to evaluate our reasoning frame-

work. By calculating true positive rate and false positive

rate, we are able to draw a ROC curve as shown in

Fig. 10a. Each prediction result or instance of a confusion

matrix represents one point in the ROC space. The best

possible prediction method would yield a point in the upper

left corner at coordinate (0,1), and it is also called a perfect

classification. So any point closer to that would be con-

sidered as a better approach. It is shown that the proposed

approach is the best prediction method for anomaly

detection. The best performance of each approach is

compared and presented in Fig. 11, where the proposed

approach gives 97.4% Specificity, 91.5 % Precision, and

92.6 % Accuracy at confidence threshold value of 0.7,

while the normal CBR approach only gives 93.7 % Spec-

ificity, 81.2 % Precision, and 88.5 % Accuracy at confi-

dence threshold value of 0.8.

Fig. 8 Left is the Android application built for CBR in a smart home environment. Right is the demo of the CARA pervasive healthcare system

showing context-aware reasoning and remote monitoring application
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To measure the performance of our approach, we added

a time-checking function. A start time is noted before

calling a method, and then, the finish time is noted after

calling the method, providing a measure of the execution

time for each task. We applied tenfold cross-validation to

several case bases with different amounts of Normal and

Abnormal cases. The summarized test results are shown in

Table 6.

Although the reasoning tasks mostly rely on the compu-

tational power of the client device, it is clear that the response

Fig. 9 Daily routine of the interviewee

Table 5 Results of various

CBR approaches
Conf THR True positive False positive True negative False Negative Accuracy (%)

Common CBR

0.9 65 47 145 5 80.15

0.8 52 12 180 18 88.55

0.7 32 3 189 38 84.35

0.6 32 3 189 38 84.35

Improved CBR with fuzzy dynamic weights

0.9 68 67 125 2 73.66

0.8 66 33 159 4 85.88

0.7 54 7 185 16 91.22

0.6 47 5 187 23 89.31

Proposed CBR with fuzzy dynamic weights and fuzzy rules adaptation

0.9 68 26 166 2 89.31

0.8 63 12 176 7 92.64

0.7 54 5 187 16 91.98

0.6 47 2 190 23 90.46
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time of our rule engine is in direct proportion to the amount of

cases being checked and the complexity of rules. We notice

that the CBR mechanism gets computationally extensive as

the size of the case base increases. If we have the system

running for weeks and months, producing many thousands of

cases, then it would become unacceptable in terms of effi-

ciency for the user. To relieve the problem, we are working

on the following two approaches. Firstly, a regular mainte-

nance scheme is essential to remove redundancy from the

case base. Secondly, the underlying cloud computing could

provide a reasonable solution for big data mining by sub-

dividing the case bases and then allocating groups to dif-

ferent servers to allow parallel processing.

8 Conclusion and future work

There are some existing reasoning approaches which have

been proved have the potential to support pervasive

healthcare systems, such as semantics-based ontology

mechanisms and rule-based expert methods. However, such

systems require as much as possible domain knowledge in

advance to produce better reasoning results. Other machine-

learning approaches like neural networks and Bayesian

networks, although they are capable of gaining under-

standing about a problem domain and providing reasoning

functions after learning, take great efforts to train these

systems no matter whether they are designed for supervised

learning or semi-supervised learning. We are not arguing

with these existing methods and their capabilities in this

paper, and we are but to improve them by adapting rule-

based mechanism with learning ability which makes our

reasoning system more adaptive and more intelligent.

In this paper, we have proposed a novel context-aware

hybrid reasoning framework that integrates fuzzy rule-

based reasoning with an instance-based model to achieve

pervasive healthcare in smart home environment. The

advantage of the approach is that it performs fully unsu-

pervised learning and with the minimum input from the

domain expert. The evaluation result shows that comparing

with other approaches (e.g., rule-based reasoning and

common case-based reasoning), it significantly improves

the performance of the reasoning engine in terms of effi-

ciency, accuracy, and flexibility. It achieves this by

adopting context models for case representation, dynamic

weights and hierarchic similarity for case retrieving, and

intelligent rule validation for case adaptation. We believe

the proposed reasoning framework makes the CARA sys-

tem more robust and more adaptive to a changing

environment.

Fig. 10 ROC space of three

different approaches for

anomaly detection

Fig. 11 Best performance of three different approaches

Table 6 Inference performance for various case bases

Total amount

of cases

Normal Abnormal Time per

cycle (ms)

262 192 70 1,925

200 150 50 1,256

100 72 28 507

50 39 11 182
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Despite initial encouraging results, our current approach

can be further refined and extended. The next phases of our

work include recognizing user activities by tracking user

movement and related context (e.g., location and duration)

and then comparing them with recorded patterns. We are

also working on building up a smart home lab by deploying

wireless sensor networks, containing various environmen-

tal and device sensors, in a real-home environment.

Another direction for future research we want to explore

is to tie our findings back in to our earlier work on a design

methodology for medical healthcare systems with a socio-

technical perspective. Our research has shown that ambient

intelligent systems can benefit from a clinical knowledge

model, but we have not yet explored the relation with the

different knowledge containers in detail. Additionally, we

want to deploy our reasoning framework in a private cloud

environment for data mining and more efficient case

retrieving, since the current implementation is limited by

the computing power of the device.
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